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Abstrad. The specUal form factor K ( r )  plays a crucial role in the understanding of the 
statistical propti? of q u a  energy spectra of strongly chaotic systems in terms of periodic 
orbits. It allows the semiclassical computation of those staristics &at are bilinear in the spectral 
density d ( E ) ,  like the spectral rigidity A3(L) and the number variance Z*(L). Since Berry's 
work on the semiclassical approximation of the spectral rigidity in terms of periodic orbits, it is 
generally assumed that the periodieorbit expression for the spectral form factor universally obeys 
K ( r )  = 1 for r >> 1. Here we show that for a wide class of sh'ongly chaotic systems, including 
billiards with Neumann boundag conditions and the motion on some Riemann surfaces, the 
asymptotic behaviour of the semiclassical spectral form factor K ( 7 )  depends very sensitively 
on the averaging employed. A Gaussian averaging is preferable f" a theorerical as well as 
kom a numerical point of view to. for example, a rec&gular averaging. However, we show 
in this paper that the Gaussian averaging leads in some cases to an asymptotic behaviour li);e 
K ( r )  - eci, where c > 0 depends only on the energy E at which the statistic is cansidered. 

1. Introduction 

A main issue in quantum chaology has been the study of statistical properties of quantal 
energy spectra of classic ally^ chaotic systems. Based on the examination of a variety 
of systems, it is now widely accepted that statistics measuring short- and medium- 
range correlations are universal and agree with the results of random-matrix theory 
[l-31. Long-range, correlations are non-universal and differ from system to system. A 
theoretical explanation for universal, as well as for non-universal, behaviour was given 
by Berry by examining semiclassical approximations for statistical quantities measuring 
two-point correlations [4,5]. These approximations were obtained using the semiclassical 
approximation for the level density accordmg to periodic-orbit theory [3]. 

The semiclassical results are conveniently described in terms of the spectral form factor 
K ( z )  [5]. It is defined as the Fourier transform of the two-point correlation function of the 
oscillatory part d,,,(E) of the spectral density d ( E )  = &E) +do&), where &E) is the 
mean level density. 

For the semiclassical approximation of K ( s )  the following results have been obtained. 
For small values of t, K ( r )  has peaks at times corresponding to the shortest periodic orbits 
and is thus non-universal. In a slightly higher range of 5 these peaks become very dense, 
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and smoothing over them yields a linearly increasing K ( r )  in agreement with the results of 
randommatrix theory. For large values of r,  the smoothed K ( r )  approaches the value 1. 

Results for other frequently used statistical measures, like the spectral rigidity A3(L) or 
the number variance Cz(L) ,  can be obtained from K ( r )  by an integral transform. In this 
way one obtains a universal behaviour for A&) and E2(L) in the lower L-range and a 
non-universal saturation for large values of L [4,6]. This saturation also has consequences 
for many other statistics l i e  the higher level spacings P(k,  s) [7]. 

The semiclassical results for K ( r ) ,  however, were obtained under certain assumptions 
on the convergence of the periodic-orbit sums as well as on the validity of the semiclassical 
approximation. In the present paper we demonstrate that for the case where all periodic 
orbits have the same phase factor xn, e.g. certain billiards with Neumann boundary 
conditions, these assumptions are not necessarily satisfied, and the behaviour of the 
semiclassical form factor K ( r )  depends sensitively on the energy (and time) averaging 
used for its evaluation. For this reason, we have to choose carefully the way in which 
the semiclassical form factor is evaluated. A convenient choice is a Gaussian averaging, 
which leads to a periodic-orbit sum which allows an efficient summation of periodic orbits. 
In addition, the Gaussian averaging leads to an absolutely convergent periodic-orbit sum 
so that all problems concerning an analytical continuation of the periodic-orbit expression 
are absent. We will show, however, that in this case the semiclassical approximation to 
the spectral form factor increases exponentially for large values of r if evaluated at fixed 
energy and with fixed smoothing parameters. We give an explanation of the origin of this 
exponential increase on the example of systems where Gutzwiller's trace formula is exact 
rather than only a semiclassical approximation. By using the trace formula, we give a 
rigorous proof of the exponential increase of the semiclassical K ( r )  for these systems. We 
further show why the semiclassical sum rule of Berry, which was used for the derivation 
of the result K ( r )  + 1 for large values of r ,  cannot be applied in this case. At the end 
of the paper we describe a rectangular smoothing by which the exponential increase of the 
seficlassical K ( r )  can be avoided. 
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2. The spectral form factor with Gaussian smoothing 

K ( r )  is defined as 

where the brackets (. . .) denote a local averaging over an energy interval AE around energy 
E .  The variable r is the time measured in units of the Heisenberg time TH = ZirfiJ(E). 
Universal behaviour is expected when K ( r )  is evaluated in the semiclassical regime with 
a(E)-' < AE < E ,  i.e. the energy interval AE contains many energy levels but is 
classically small and r is large enough so that the corresponding classical motion fills the 
phase space uniformly. 

In the following we restrict ourselves to the most transparent case of strongly chaotic 
systems, i.e. two-dimensional billiards with a positive KolmogorovSinai entropy and 
periodic orbits which are all unstable and isolated. The periodic-orbit expression for do&) 
is given by [3] 
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where In, g,, x. E [M, Ai] and M, denote the length of the periodic orbit, its multiplicity, 
phase factor and monodromy matrix, respectively. The momentum is p = ,&Z. The 
phase factor xn = exp(-irru,/Z) is determined by U,. The classical quantity U. is the 
maximal number of conjugate points along a primitive periodic orbit plus twice the number 
of reflections on those parts of the boundary where Dirichlet boundary conditions are 
required [3]. The prime at the k-sum counting positive and negative traversals denotes 
that k = 0 is excluded. In general, the periodic-orbit sum in (2)  is not convergent. A 
semiclassical approximation for K ( s )  is obtained by inserting (2)  into (1). The 6-integration 
is then carried out by a stationary-phase approximation in which the actions in the exponent 
pkl, =: &,k(E) are expanded up to first order in energy. This leads to 

where 

k f l p & E )  
m 

e := t. (4) 

The spectral form factor K ( r )  is a quantity with huge fluctuations about its mean value. 
In its semiclassical approximation this is exemplified by the presence of the D m c  delta- 
functions. In order to get a useful quantity, K(r)  has to be smoothed in the variable t, 
which we do with a Gaussian weight. This is equivalent to replacing the Dirac 'delta- 
functions in the above equation by a Gaussian S(x) + (&Al)-' exd-x2/(2(Al)2)). 
For the local average (. . .) in (3) we also choose a Gaussian averaging with variance (Ap)' 
centred at momentum p .  This has the advantage that for the special choice AI = fi/(2Ap) 
the periodic-orbit double sum can be reduced to the absolute square of a single sum [8] 

Evaluations of the semiclassical spectral form factor have been carried out with  this 
formula with good results [9]. The Gaussian smoothing has the additional advantage that the 
periodic-orbit sum in equation (5) is absolutely convergent since the exponential proliferation 
of the periodic orbits, being typical for chaotic systems, is suppressed by the Gaussian factor. 
We would also like to note that the derivation leading to (5) can be performed by dealing 
only with absolutely convergent sums in each step. This can be done by using a Gaussian- 
smoothed level density instead of the unsmoothed level density of equation (2) ,  i.e. by 
applying a th i i  Gaussian smoothing. This corresponds to a replacement of the amplitudes 
A,.k by A,,kexp(-()lkln/2fi)') in the periodic-orbit sum [lo, 111. Equation (5) is then 
obtained in the limit q + 0. 

Now, let us consider the periodic-orbit sum in (5) in the case where all phase factors 
obey x,, = +1. In this case the average contribution of long orbits to the periodic-orbit sum 
can be estimated by using the asymptotic behaviour of the periodic orbits. Assume that 
the length spectrum {Z"} is completely known up to a cut-off length .C. The periodic-orbit 
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sum in (5) is then evaluated by summing over all periodic orbits with length 1. < 1: and 
taking into account the average contribution of the periodic orbits with length 1, > L by a 
remainder term R(L, p )  [12]. This remainder term is obtained fiom the periodi-orbit sum 
in the following way. The denominator 
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is replaced by its asymptotic value exp(lklu,/2), where U,  is the stability exponent. The 
stability exponent U, = hnln can be approximated by U, - &, where 5; is the metric 
entropy defined as the asymptotic mean of the Lyapunov exponents A,,. Furthermore, only 
the k = 1 contribution of the k-sum is important asymptotically. Finally, the sum over 
primitive periodic orbits is replaced by an integral, taking into account that the number of 
periodic orbits with length shorter than I increases asymptotically as N(2) - (e'l/tZ), where 
f is the topological entropy. One thus obtains for the remainder term 

leading to 

with p := t - (5;/2) + i(p/h). R(L, p ) ,  together with the length spectrum 11.1 up to L, 
allows the computation of K&). For fixed parameters p ,  Ap and L, the remainder term 
R(L, p )  is a function of t being related to the length e by (4). For a given T (or e), only 
periodic orbits with lengths kl, near t contribute to the periodic-orbit sum in (5). This can 
be inferred from the Gaussian factor inn the periodic-orbit sum having a width fi/(-.&Ap). 
This implies that the remainder term R(L, p )  vanishes for T << 2 with 

" mL 
5 := 

27&pd(E) 

corresponding to lengths kl, much smaller than the cut-off length L. This behaviour is 
clearly visible in figure 1, where R(L, p )  is shown as a function of t for the system 
discussed below. In the neighbourhood of i the remainder term R(L, p )  shows large 
oscillations compensating the large oscillations of the periodic-orbit sum due to the sharp 
cut-off [12]. For t >> 2 the periodic-orbit sum is approximated by the remainder term alone 
since in this case the periodic orbits having lengths kl, smaller than 1: yield no contribution. 

In order to derive the mean behaviour of K&) we now consider the remainder term 
(7) in the region t >> Z where it accounts for the full periodic-orbit sum. In this range of 
T, the real~part of the argument of the error function takes on large negative values so that 
the asymptotic behaviour of the error function can be used. One then obtains the result 
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. 300 I ,  8 . -  I , 1 ,  - , . I  

-300 t '  " ' " ' ' I  ' ' "I  ' ' ' " " ' ' 4  
0.10 0.11 0.12 0.13 0.14 T 0.15 

Figure 1. The remainder term (7) is shown for the values p = 15, Ap = 5 and L = 12 as 
a function of I related to e by (4). The full curve represents the modulus, the dotted and the 
broken curves the real and imaginary parts, respectively. The dotted vertical line indicates the 
value of t corresponding to the cut-off length L. 

which is independent of the cut-off length L. Since f --f 0 in the semiclassical l i t ,  
p + 00 and the approximation (9) holds for~all r > 0. With (9) the asymptotic behaviour 
of the spectral form factor Ksc(r)  is obtained 

with 

This is the main result of this paper which shows that the spectral form factor K&) 
increases exponentially with r if all phase factors xn are equal to one and t > 1/2. This 
behaviour is absent when the phase factors x .  in the periodic-orbit sum in (5) take on values 
from the set [&I, 54) (or [ H I )  with no correlation and with the same probability. Then 
neighbouring terms, with respect to a sorted-length spectrum, cancel. If all xn = +I, no 
such cancellation can occur. The phases exp((ilfi)pkl,) in (5) can only lead to a cancellation 
if neighbouring periodic orbits differ enough in length so that their phases can be considered 
random. However, because of the exponential proliferation of the number N(1) of periodic 
orbits, this length difference decreases exponentially with increasing length, which implies 
that for long neighbouring orbits the phases are nearly identical which in turn leads to the 
behaviour (10). 
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The asymptotical exponential increase of &(r) sets a limit to the values of r for which 
the semiclassical approximation Ksc(r) can be expected to give a good approximation to 
the spectral form factor of the energy spectrum. In order that the exponential increase can 
be neglected one has to require that 

"tP 
' ( t  - ~ / 2 ) 8 z h j ( E ) A p p 2 '  

One can perform the semiclassical l i i t  p + CO in such a way that the upper l i i t  for r 
in equation (12) goes to infinity. For that purpose one has to require that the width Ap 
satisfies Ap/& + 0 as p + CO. 

However, for finite p and Ap it is also possible to extend the limit of validity of the 
semiclassical approximation. One can regularize the periodic-orbit sum by subtracting the 
mean behaviour equation (9) from the periodic-orbit sum in equation (5). In the next section 
we show that in the case of hyperbolic octagons this regularization yields the spectral form 
factor K ( r )  from which the contribution of the zero-mode Eo = 0 has been subtracted. 
Since this omission of a single quantal level does not change the statistical properties of 
the energy spectrum [En},  this regularized spectral form factor can be used for evaluating 
quantities l i e  the number variance Xz(L) or the spectral rigidity A3(L). 

3. The spectral form factor for hyperbolic octagons 

We now consider an asymmetric hyperbolic octagon-a strongly chaotic system which 
describes the motion on a compact Riemann surface, of genustwo, with constant negative 
curvature. (For an introduction to these systems see 131.) The only symmetry of an 
asymmetric octagon is the parity symmetry. The periodic-orbit theory can be formulated for 
each symmetry class separately 1131, where the positive-parity class is the interesting case 
since all its phase factors are xn = +l. For simplicity, we use from now on dimensionless 
units h = 2m = 1. The Lyapunov exponents are given by A. = 1 and the metric entropy 
h and the topological entropy t are both unity. In each symmetry class the mean level 
density is asymptotically J ( E )  = 1 and the quantal levels are distributed according to 
randommatrix theory with respect to short-range correlations [7] .  

For this system we compare numerically the asymptotic expression z ( r )  (equa- 
tion (IO)) with the spectral form factor &(r) (computed from the length spectrum [ln} 
up to a cut-off length L including the remainder term (7)). Figure 2 shows Ksc(r) for 
p = 15, Ap = 5 and ,C = 12 corresponding to 3 = 0.1273.. . (indicated as the dotted 
vertical line). The spectral form factor Ksc(r) computed from the length spectrum up to I: 
including the remainder term R(L, p )  is shown as a full curve. The asymptotic mean (10) 
is displayed as a broken curve and good agreement is observed. Moreover, Ksc(r)  is signif- 
icantly larger than the value already known for r Y 0.11. In order to avoid the impression 
that the exponential behaviour is enforced by the remainder term alone, an evaluation of (5) 
is shown (chain curve) where, in contrast to the correct evaluation (full curve), the periodic- 
orbit sum up to L = 12 has been omitted, i.e. only the contribution of the remainder term 
R(L, p )  is shown. For r > 0.125 one observes a non-vanishing contribution which comes, 
however, as no surprise since R(L, p )  is practically zero for smaller values o f t ,  as can be 
seen in figure 1. Thus the exponential behaviour up to z N 0.125 arises solely from the 

- 
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0.01 0.03 0.05 0.07 0.09 0.11 7 0.13 

Figure 2. A comparison behveen the asymptotic behaviour (10) (broken curve) and the direct 
evaluation, based on the periodic-orbit expression (5) (full curve), is shown for the positive 
parity class of a hyperbolic ocragon. The values p = 15, Ap = 5 and L = 12 have been used. 
The dotted vertical line indicates the values of ? mrresponding to L = 12. The chain curve 
is the result obtained for the above values but where the periodieorbit sum up to & = 12 i s  
omitted. 

contribution of the periodic orbits for the parameter values chosen above. This numerical 
example illustrates the exponential increase of &(r) well. 

In the case of hyperbolic octagons, the periodic-orbit theory is exact and not only a 
semiclassical approximation since it is identical to the Selberg trace formula. This allows a 
further rigorous proof and an interpretation of the exponential behaviour of K,,(r) which 
we would like to discuss now. In [13] the Selberg trace formula has been derived for a 
given parity class which reads for a hyperbolic octagon (genus g = 2) 

where units p1 = 2m = 1 are used. Here p: denotes the momenta corresponding to the 
energy eigenvalues E,' = p," + of the two parity classes. The function h(p) has to be 
even and holomorphic in a ship I Im pi Q 0. Furthermore, h ( p )  has to decrease 
faster than [PI-* for [pi + 00, but otherwise it is arbitrary. Under these assumptions all 
sums and integrals involved are absolutely convergent. The Fourier !"form of h(p) is 
denoted by 

+ E ,  E 
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In the following we will consider only the positiveparity class for which x$ = +1 and we 
will drop the superscript +. 

The trace formula (13) can be used in order to express the periodic-orbit sum in (5) by 
a sum over the quantal energies E,. To achieve this we choose 
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> I  1 + exp -- (p' + p)' + i(p' + p)e ( 4 4 9  

which fulfils all conditions stated after (13). The Fourier transform of this h(p') is given 
bY 

g ( x )  = exp( -Ap' (~ -~ )~+ ipx) fexp( -Ap~(Z+x)~  -ipx). (15) 

With this function, the periodic-orbit sum in (13) is identical to the periodic-orbit sum in 
(5) and thus the Selberg trace formula can be used in order to express the periodic-orhit 
sum in terms of the quantal energy spectrum. In this way one obtains the following exact 
expression for the semiclassical form factor &(z) of equation (5) 

where dimensionless units have been used. The asymptotic behaviour of equation (10) can 
now also be obtained from (16). First one observes that the integrals in (16) are bounded 
for real e so that they are not responsible for the exponential behaviour. Funhermore, the 
sum'over the quantal energies is also bounded if the momenta pn are real which is the case 
for E! $ because of E, = p,' + a. For the zero-mode EO = 0 one obtains the momentum 
po = 112. This yields the crucial contribution to the exponential behaviour for e + 03 

which is identical to the result (10) for the asymmetric octagon. This derivation shows 
clearly that the exponential behaviour of G ( z )  is enforced by the term arising from the 
zero-mode EO = 0. The zero-mode is due to the constant eigenfunction having positive 
parity and thus belonging to the case where all phase factors are xn = +l. Such a 
zero-mode is also always present in two-dimensional billiards with Neumann boundary 
conditions. The fact that a single level (EO = 0) has such a dramatic effect may appear 
very surprising, but this is not the first time that the zero-mode has played an important role 
in the context of the Selberg traceformula. A further example is the asymptotic behaviour 
of the weighted classical staircase N(1) := EbGf gnxn, which is identical to N(1) in the case 
x .  ,= +I. In the case x,, = +1, the zero-mode is responsible for the exponential increase 
of N(1) = N(1) - ef/l,  as can be seen in the periodic;orbit formula which expresses $ ( I )  
in terms of the quantal energies [141. A periodic-orbit formula for N(1) does not exist 
if the phase factor xn is not restricted to the value +l. In the general case, where the 
phase factors xn behave randomly, one expects $ ( I )  to fluctuate around zero instead of 
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increasing exponentially. Of course, in this case N ( L )  also increases exponentially due to 
the non-vanishing topological entropy. 

The only approximation that was made in the derivation of the semiclassical K,,(t) for 
the octagon was the stationary-phase approximation of the integral in equation (1). This 
means that this stationary-phase approximation is the origin of the exponential increase 
since the quantum mechanical K ( r ) ,  which is evaluated from the quantal energies, does 
not have an exponential increase. The effect of the stationary-phase approximation can 
be illustrated further if one considers the Gaussian-smoothed spectral form factor for the 
momentam specmm ( p .  = -1, which is defined by (Ap Ai  = 4) 

/mdl'-exp(--A12(l'-t)2 1 1 
2 

K p ( z )  := lim 7 

v+od(p) -m &A1 

~j2)e'"' 

with e = 2 ~ d ( p ) s .  d(p)  is the mean momentum density which is asymptotically given 
by d ( p )  = p .  # ( p )  is the Gaussian-smoothed momentum density. It is identical to the 
left-hand side of the Selberg trace formula (13) with the choice 

The Fourier transform of &') is 

1 
t(n) = -cos(px)exp 

K 

Now, one expresses &(p) in equation (18) by its periodic-orbit sum and evaluates 
the integrals, which can be done without approximation. One then finds that the spectral 
form factor for the momentum spectrum KP(r) is exactly identical to the semiclassical form 
factor K,,(z) of equation (5). That is, the effect of the stationary-phase approximation is 
to replace the form factor of the energy spectrum by the form factor of the momentum 
spectrum and since the momentum spectrum contains an imaginary eigenvalue this leads to 
the exponential increase of Ksc(s)  for large values of 7.  

The explicit expression of K&), in terms of the momentum eigenvalues in 
equation (16), gives the possibility to extend the application of the semiclassical 
approximation beyond the restriction (12). This can be done by subtracting the contribution 
h(po)  2 R(L, p )  (see equation (9)) of the zero mode from the periodic-orbit sum. In this 
way it is possible to evaluate the spectral form factor over the whole range of z values. 
Preliminary numerical results indicate that the spectral rigidity As(L) can be computed from 
such a regularized spectral form factor K ( r )  [15]. 

The imaginary momentum eigenvalue po is also the reason why Berry's semiclassical 
sum rule cannot be applied in this case. This sum rule was used for the derivation of the 
asymptotic behaviour Kso(r)  + 1 for 7 >> 1. In the following we will shortly discuss the 
derivation of the semiclassical sum rule according to section 5.4. in 1.51. 
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Consider a Gaussian-smoothed delta peak 

The delta function is recovered by 

6 ( p )  = R-tO l i m f i q s ; ( p ) .  (22) 

Assuming that the momentum spectrum has no degeneracies, one further obtains 

WP)) = 9-0 l i m & & % 9 2 ) .  (23) 

Only the oscillatory contribution to the momentum density d(p )  will contribute on the right- 
hand side in the limit q + 0. Substituting the periodic-orbit expression into equation (23) 
by using the Selberg trace formula with the functions <(p') and j ( x )  of equations (19) and 
(20), one obtains 

where A,J = ln(2sinh(k1,/2))-'. Equation (24) is the semiclassical sum rule. In order to 
obtain the asymptotic behaviour of K,,(s) one approximates k2Zi + k*Z,$ by $(!d. + k'Za,)2 
since the difference $(kZ,, - kfZn,)' is assumed to be small for pairs of orbits which give 
a significant contribution to the double sum after averaging over momentum p .  Then the 
double sum over periodic orbits can be expressed by an integral over the semiclassical form 
factor Ks(r): 

The asymptotic behaviour KSc(r) + 1 for s >> 1 then follows from this integral equation. 
In the presence of an imaginary momentum eigenvalue this argumentation cannot, 

however, be applied because then the limit lii,,~&q(dq(p)~) becomes infinite, as will 
be shown in the following. Substituting the momentum spectrum into equation (23) and 
using again a Gaussian averaging for,the averaging over momentum one obtains 
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All terms in this multiple sum are positive and the terms with s,, = 1, s, = -1, 
p .  = pm = i/2 and s, = -1, s, = 1, pn  = p ,  = i/2 go to infinity if q + CO. For 
this reason the sum rule cannot be applied. 

4. The rectangular smoothing 

It is possible to define a form factor for the momentum spectrum which does not have an 
exponential increase. For this purpose one has to use an averaging in p and a smoothing 
in r that cuts off the contribution of the zero mode. This can be achieved, for example, 
by a rectangular smoothing in p and a cut-off of the Fourier transform over E at =tu. This 
corresponds to a smoothing in 2 (or z) with a weight factor sin(u(2 - e'))/(n(e - E' ) ) .  In 
this case, the form factor K p  (z) has no contribution from the zero mode po if it is evaluated 
in the semiclassical regime. However, one can show that for this choice of the smoothing, 
the periodic-orbit expression for K p ( z )  is divergent. 

A solution to this problem is to work with a Gaussian-smoothed momentum density, 
for which the width at the peaks can be chosen to be arbitrarily small, but not equal to 
zero. It is, however, not possible to choose the same width of the Gaussian peaks q for all 
values o f t  for the following reason: if r is increased, the Fourier transform in the variable 
E contains information about increasingly finer details of the momentum density. In order 
that the Fourier transform is not influenced by the finite width of the peaks at the momentum 
eigenvalues one has to decrease q while increasing z. A proper choice is q = qo/e, where 
170 is chosen to be very small. The second reason for choosing a r-dependent parameter 

is the fact that the Gaussian peak at the zero mode po will give a small contribution 
to the spectral form factor, which eventually, for very large values of t ,  will lead to an 
exponential increase of K p ( r )  if 7 is chosen to be constant. The choice q = qo/e suppresses 
the contribution of the zero mode for all values of t. 

In this way one defines a spectral form factor for the momentum density with rectangular 
smoothing as 

where q = qo/L and e = 2 d ( p ) r .  d"p) is &e Gaussian-smoothed momenhun density 
which corresponds to the left-hand side,of the Selberg &ace-formula equation (13), evaluated 
with the function &p') of equation (19). The variable U is chosen to be of the same order 
of magnitude as Ap. As will be demohstrated later (equation (30)). this has the effect that 
the spectral form factor has only contributions from momentum eigenvalues which lie in an 
interval of the order of magnitude of Ap around p .  

The expression for K;(r) in terms of the momenhun eigenvalues { p J  is obtained by 
replacing d:&) by d?(p )  - zq(p) ,  inserting the Gaussian-smoothed momentum density 
and performing the integrals. The result is given by 
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In eaua )n the quadruple sum is obtained from the integra n over the term 
d*(p'--;Z)d*(p'+€/Z). The tint term on the right-hand side of equation (28) is obtained 
by approximating 

p + w z  € -  E -  1 dp' (p' - z) d* (p' + i) - dn (p' - 2) d* (p' + f2) AP p - a p l l  

- & (p' - i) d* (p'+ i)] w -[&p)]*. 

For this approximation it was assumed that A p  << p and I E ~  < U << p .  In equation (28) 
the magnitude of the arguments of the error functions is very large, since q = qo/e is very 
small (if e is not too small). For this reason one can approximate the error functions by 
their asymptotic approximation erf(z) rx 1 - exp(z*)/(z/jFz), Z + CO, I argzl e 3n/4. One 
then finds that only the momentum eigenvalues which satisfy 

p - A p  e 4(p ,  + pm) < p + 4 A p  (30) 

give a significant contribution to the quadruple sum. All other contributions can be 
neglected. (We assume that there are no pairs of momentum eigenvalues whose difference 
is equal to f u  or whose sum is equal to 2 p  i Ap.) For that reason, K;(r)  is given 
approximately by 

and - U  c pn - pm c a 

where the double sum is restricted to momentum eigenvalues which satisfy the conditions 
(30). 

The periodic-orbit expression for K;(t) is obtained by inserting the periodic-orbit sum 
for dzs,(p) into equation (27). The result is 

In this expression the Gaussiau term is necessary in order to make the periodic-orbit sums 
convergent. 
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A disadvantage of rectangular smoothing is the fact that long periodic orbits give a 
greater contribution to the periodic-orbit sums than in the case of Gaussian smoothing so 
that a much greater number of periodic orbits have to be taken into account This effect 
becomes even more pronounced as t is increased. 

In summary, we have examined semiclassical approximations to the spectral form factor 
K ( t )  for systems in which the periodic orbits contribute to Gutzwiller’s trace formula 
with the same phase factor xn. We have shown that the semiclassical form factor is a 
sensitive quantity which has to be defined with care. In order to evaluate the form factor 
semiclassically, one has to specify the kind of averaging applied to energy and time and a 
very convenient choice is Gaussian averaging. By using asymptotic properties of periodic 
orbits, we have shown, however, that for this choice the semiclassical form factor increases 
exponentially for large values of t. We have further considered asymmetric octagons for 
which Gutzwiller’s trace formula is exact and is identical to the Selberg trace formula. 
We have demonstrated the exponential increase of the semiclassical K ( t )  by numerical 
results and provided a proof of this asymptotic behaviour by using Selberg’s trace formula. 
Finally, we have shown that the exponential increase can be avoided by using a rectangular 
smoothing. 
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